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1. INTRODUCTION

Despite recent developments in gesture-driven visual interfaces, users still have to
learn how to use a new interface before they are be able to communicate effectively
with the machine. As applications continue to increase in complexity, the limi-
tations of gesture- and menu-driven commands will become more apparent. The
learning curve will grow and the constraints caused by the lack of expressiveness
of the modality will begin to frustrate users. Speech on the other hand is the pri-
mary and the most natural means of communication. It requires no learning and
it has significant expressive power. As such, it is likely to become an increasingly
significant component of future generation man-machine interfaces.

Current speech enabled applications often automate communication with database
systems, especially when a user can only communicate with the application over
a phone. Examples of such spoken dialogue systems include: remote access to
information and booking systems [Raux et al. 2005], and voice diallers [Williams
2008a]. Whilst these systems are still relatively crude, they exhibit both the po-
tential advantages of speech and the problems which result from imperfect speech
recognition.

A typical dialogue system consists of a speech understanding component, a dia-
logue manager, and a speech generation component. Speech understanding usually
consists of a speech recogniser and a semantic parser, and speech generation re-
quires a natural language generator and a speech synthesiser. The main challenge
in spoken dialogue systems is to robustly handle communication errors produced by
the input/output components of the system, especially those resulting from speech
recognition and understanding errors.

In recent years, Partially Observable Markov Decision Processes (POMDPs) have
been proposed as a principled way of modelling the inherent uncertainty in spoken
dialogue systems [Young et al. 2010]. When interacting with the system, the user’s
speech is converted to words by the recogniser and passed to the semantic parser
which outputs an N-best list of dialogue acts. For example, if a user utters “I want
an Indian restaurant in the cheap price range”, the corresponding dialogue act
would be “inform(food=Indian, type=restaurant, pricerange=cheap)”. However, if
the understanding component was uncertain about what the user said, it might also
output “inform(food=Italian, type=restaurant)”, and other variants. This N-best
list of dialogue acts is then used by the dialogue manager to update the dialogue
state. Based on this updated state, a dialogue policy, and the associated application
database, a system action is produced, again in the form of a dialogue act. The
system action is then passed to the natural language generator which converts it
to text and then via the synthesiser to speech. Readers interested in POMDPs and
reinforcement learning in general may refer to [Kaelbling et al. 1998; Sutton and
Barto 1998] for more details.

A POMDP dialogue manager includes three main parts: a dialogue model rep-
resenting state information such as the user’s goal, the user’s dialogue act and the
dialogue history; a policy which selects the system’s responses based on the inferred
dialogue state; and a reward function which specifies the desired behaviour of the
system. In a POMDP system, the dialogue model provides a compact represen-
tation for the distribution of the unobserved dialogue state called the belief state
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Fig. 1. Structure of a POMDP dialogue system: au is a user act produced given the user state su,
ãiu is an estimate of the users’ dialogue acts, b(sm) is the belief state, b̃ is a summary representation
of the belief state, ã is a summary action which is later expanded into full dialogue act, am, by a
heuristic mapping based on the full belief state and the database.

and it is updated every turn based on the observed user inputs in a process called
belief monitoring. Exact belief monitoring of the full dialogue state is intractable
for all but the simplest systems. One way to address this issue is to represent the
state in the compact and approximate form of a dynamic Bayesian Network (BN),
where nodes represents attributes1 in the application ontology. Then by exploit-
ing the conditional independence of the network nodes, a tractable system can be
built [Thomson and Young 2010]. In this case, the parameters of the model describe
the conditional distributions of the nodes in the network.
The policy selects the dialogue system’s responses (actions) based on the belief

state at each turn, and it is typically trained using reinforcement learning with the
objective of maximising the expected cumulative reward. The use of reinforcement
learning algorithms for POMDP systems usually relies on the observation that
a POMDP system can be transformed into a continuous state Markov decision
process (MDP) and that the policy optimization problem can then be solved for
this newly defined MDP with the guarantee that the solution also optimises the
original POMDP [Kaelbling et al. 1998]. However, without approximations this is
not tractable for any real-world dialogue system.
Significant reduction in complexity can be achieved if notions of a summary space

and summary actions are introduced. The basic idea is that a successful policy does
not need access to all of the information in the belief state and the database, and
that summary actions produced by the policy can be mapped back into full actions
through a heuristic mapping [Williams and Young 2005]. A typical structure of a
POMDP dialogue manager embodying these ideas is depicted in Figure 1.
While there are many efficient techniques for learning the policy parameters [Sut-

ton and Barto 1998; Peters et al. 2005; Engel et al. 2005; Geist et al. 2009], no good

1Attributes are constraint values such as type, pricerange, food, etc. In simple spoken dialogue
systems which do not make use of an ontology, they are often referred to as slots. Here the terms
slot and attribute should be regarded as synonyms.
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ways of learning the model parameters which scale to real-world dialogue systems
have been established yet. Hence, in virtually all current systems, the dialogue
model parameters are hand-crafted by a system designer [Roy et al. 2000; Zhang
et al. 2001; Bui et al. 2009; Thomson and Young 2010; Young et al. 2010]. Ide-
ally, one would like to estimate the parameters from the interactions with the user
and some attempts have been made in this direction. For example, Georgila et al.
[2005] and Kim et al. [2008] used maximum likelihood estimates from an automat-
ically annotated corpus of real dialogues. The method is problematic, however,
since the quality of the estimated model depends on the quality of the automatic
annotation which itself relies on having a good dialogue model. Williams [2008b]
obtained maximum likelihood estimates from a corpus with manually annotated
dialogue states. Although this approach can provide good estimates of the dia-
logue model, it is very laborious and in practice only a small number of dialogues
can be obtained. Doshi and Roy [2007] presented a dialogue model which was
trained by Viterbi learning and using a reinforcement signal based on the success-
ful completion of each dialogue. In this method, the initial model parameters have
to be handcrafted with some reasonable quality to be able to improve the initial
parameter parameters. Syed and Williams [2008] showed how to use Expectation-
Maximization (EM) to learn parameters of an observation model. Please note that
the dialogue model can be factored into a transition model between states and an
observation model. In this work, no attempts were made to learn the transition
model. By assuming that the user goal remains constant, the complexity of the
problem was significantly reduced and a tractable method was achieved. Thom-
son [2010] used Expectation-Propagation (EP) to infer hidden state information
together with the model parameters. The algorithm treated the task of learning
the model parameters in an unsupervised manner. However, it is not clear to what
extent likelihood maximisation over a dialogue corpus correlates with the expected
cumulative reward of the dialogue system.

This paper presents a novel reinforcement algorithm called Natural Actor and
Belief Critic (NABC) for jointly learning the parameters of a dialogue model and a
policy which maximises the expected cumulative reward. The method is presented
and evaluated in the context of the BUDS POMDP dialogue manager which uses a
dynamic Bayesian Network to represent the dialogue state. However, the method
is sufficiently general that it could be used to optimise virtually any parameterised
dialogue model. Furthermore, unlike most of the maximum likelihood methods used
so far, the NABC algorithm does not require that the user goal remains constant
or that the model be generative.

The second algorithm presented in this paper is the Natural Belief Critic algo-
rithm which is a variant of the original NABC algorithm. The NBC algorithm
assumes that the policy is fixed and only the model parameters need to be learnt
[Jurč́ıček et al. 2010]. For example, the NBC algorithm can be used to optimise
the model parameters in a dialogue system using a hand-crafted policy.

The rest of the paper is structured as follows. Section 2 briefly describes the
BUDS dialogue manager and the method it uses for policy representation [Thomson
and Young 2010]. Section 3 then describes policy gradient methods and a specific
form called the episodic Natural Actor Critic (eNAC) algorithm which is used to
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optimise the BUDS policy. In Section 4.1, the proposed Natural Actor and Belief
Critic algorithm is presented as a generalisation of the eNAC algorithm which is
then followed by a description of the Natural Belief Critic algorithm in Section
4.2. To be able to use either the NABC or NBC algorithms, a suitable prior
for the dialogue model parameters must be defined. This mostly depends on the
model used in belief monitoring. The prior used for the BUDS model parameters
is described in Section 4.3. Both algorithms are evaluated on a system designed for
the tourist information domain in Section 5. The results and alternative methods
are discussed in Section 6. Finally, Section 7 presents conclusions.

2. BUDS DIALOGUE MANAGER

In a POMDP dialogue system, the true dialogue state st is unknown. Therefore, the
policy selects an action at at time t based on the distribution over all states called
the belief state, bt. The estimate of the belief state depends on past observations
and actions, which are referred to as the observed history ht = {a0, o1, . . . , at−1, ot}.
If the system is Markovian then the belief state bt depends only on the previous
belief state bt−1, the current observation ot and the last system action at−1. Using
Bayes theorem, the belief state bt can be computed as follows:

bt = b(st|ht; τ)

= k · p(ot|st; τ)
∑

st−1

p(st|at−1, st−1; τ)b(st−1|ht−1; τ) (1)

where the transition probability function p(st|at−1, st−1; τ) and the observation
probability p(ot|st; τ) represent the dialogue model which is parameterised by τ

and k is a normalisation constant [Kaelbling et al. 1998].

2.1 The observations and system actions

In the BUDS dialogue manager, the observations and the system actions are im-
plemented as dialogue acts. A dialogue act conveys the user or system intention.
In BUDS, the dialogue acts take the form actt(a1 = v1, a2 = v2, . . .) where actt

denotes the type of dialogue act and the arguments are the slot-value pairs where
slots refer to nodes in the user goal described in the next section. In some cases,
the value can be omitted, for example, where the intention is to query the value of
a slot e.g. “request(food)”. A full description of the dialogue act set used by the
BUDS system is given in [Young 2007].
When there is uncertainty in the speech understanding process, the input to the

dialogue manager is a list of alternative dialogue acts. For example, the utterance
“I want an Indian restaurant in the cheap price range” spoken in a noisy back-
ground might yield

inform(food=Indian, type=restaurant, pricerange=cheap) {0.6}
inform(food=Italian, type=restaurant) {0.4}

where the numbers in the brackets represent the probabilities of each dialogue
act.
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2.2 The dialogue model

A naive implementation of (1) is not tractable since there are billions of states
in a real-world spoken dialogue system2. Thus, the BUDS dialogue manager uses
a Bayesian Network (BN) to represent the state of the POMDP system, where
the network nodes represent the slots in the system [Thomson and Young 2010].
Provided that each slot or network node has only a few dependencies, tractable
systems can be built and belief estimates maintained with acceptable accuracy
using approximate inference [Bishop 2006].
The BUDS dialogue state is factored into three components: the user goal g, the

user action u and the dialogue history d. In addition, the goal and the history are
further factored into sub-goals gk and sub-histories dk according to a set of slots,
k ∈ K, in the system. For example, in a tourist information system typical sub-
goals might be the type of venue required (“type”) or the type of food (“food”).
The sub-history nodes allow the system designer to store information about the
history in order to make coherent decisions. In the BUDS system, the sub-history
nodes have three values: “nothing-said”, “system-informed”, and “user-requested”.
The user action u is the estimate of the true dialogue act from the observation o.
Apart from the task specific sub-goals, the dialogue model can include additional
nodes. For example, in a tourist information system the “method” node helps the
dialogue manager to decide whether a user is searching for a venue by attribute or
by name. Also, the dialogue model includes a “discourse” node to model discourse
actions and to control the dialogue flow. For example, the discourse node is used to
infer whether a user wants to repeat the last system action, restart the dialogue, or
end the dialogue. The reader interested in the design details of the dialogue model
may refer to [Thomson 2010].
The topology of the Bayesian network depends on various conditional indepen-

dence assumptions. The user act depends on all sub-goals and the last system
action. The sub-goals depend on their previous value, the last system action and
may depend on any combination of the other current sub-goals. The sub-history
depends on the previous sub-history and the current user act. Figure 2 shows the
resulting network for two time-slices of a two-slot system based on this idea. The
network also includes observed system actions a and observations o.
The BUDS system’s inference algorithm uses grouped loopy-belief propagation

[Thomson and Young 2010]. It maintains marginal belief estimates only for slot val-
ues which were mentioned by the user. Those slot values which were not mentioned
are assumed to belong to one group with a uniform probability distribution within
this group. Then, the belief update involves only the recomputation of probabili-
ties of the mentioned slot values and one probability of the grouped values. This
grouped loopy-belief propagation is particularly efficient in situations where the
number of potential slot values is large but the user typically only ever mentions a
few of them.
The BN model parameters τ comprise the set of conditional probabilities of the

node values. For example, the “food” sub-goal values are described by the prob-

2Note that if a dialogue system has 10 slots and each slot has 10 different values then there are
1010 distinct states.
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Fig. 2. An example factorisation for the Bayesian network representing part of a tourist infor-
mation dialogue system. The white nodes are unobserved variables while the grey nodes denote
observed variables. The squares represents the system actions decided by a dialogue policy.

ability p(g′food|gfood, g
′
type, a; τfood) parameterised by τfood. To reduce the number

of parameters specifying the distributions in the sub-goals, some parameters are
tied together on the assumption that the probability of change in the sub-goals is
constant given the last system action and the parent sub-goal. For example, the
probability of change from “Chinese” to “Indian” in the sub-goal “food” is assumed
to be equal to the probability of change from “Chinese” to “Italian”. As a result,
instead of having N2 parameters, where N is the number of values in the sub-goal,
only one probability of change τfood,change is needed. The probability of the sub-
goal staying the same is equal to 1− τfood,change. The sub-history, “discourse” and
“method” nodes do not use parameter tying as the ability to set different values for
the probability of change is beneficial in this case.

2.3 The Policy

The BUDS dialogue manager uses a stochastic policy π(a|b; θ) which gives the prob-
ability of taking action a given belief state b and policy parameters θ. When used
in the dialogue manager, the policy distribution is sampled to yield the required
action at each turn. To reduce complexity, for every action a, the belief state is
mapped into a vector of features, Φa(b) and the policy is then approximated by a
softmax function:

π(at|b(·|ht; τ); θ) ≈
eθ

T ·Φat
(b(·|ht;τ))

∑
ã e

θT ·Φã(b(·|ht;τ))
. (2)

To estimate the policy parameters, BUDS uses the episodic Natural Actor Critic
(eNAC) algorithm [Peters et al. 2005] (see Section 3).
A further reduction in complexity can be achieved by utilising summary actions

[Thomson and Young 2010]. The full set of actions is not needed as some actions
will be always sub-optimal. For example, if the dialogue manager confirms the
value of some sub-goal then it should always confirm the most likely value. As a
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result, the full set of actions is not needed. The BUDS dialogue manager uses the
following slot-level summary actions: “request”, “confirm” the most likely value,
and “select” between the two most likely values. In addition, it supports global
actions such as “inform”, “repeat”, and “bye”. The mapping of the summary
actions into full dialogue acts is performed by a hand-crafted function based on
the information in the belief state and the database. For example, the summary
action “confirm food” is mapped to “confirm(food=Chinese)” provided that the
value “Chinese” is the most probable value in the sub-goal “food”. The database
is used when the system informs about a particular venue. For example, the in-
form summary action “inform name pricerange” results in “inform(name=“Graffiti
Restaurant”,pricerange=cheap)”, where the information about the price range of
the restaurant “Graffiti Restaurant” is retrieved from the database.
There are a variety of possible forms for the Φ function. Ideally, it should perform

some form of tiling [Sutton and Barto 1998]. However, this is not always necessary
and simpler forms of feature extraction can be considered. The BUDS dialogue
manager uses a slot-level grid-based approximation [Thomson 2010]. First, it is
assumed that the slot-level summary actions depend mainly on the probability
distribution in a particular slot. Then, the probability distribution is mapped into
a binary vector which indicate nearness of the probabilities of the two most likely
values to one of the predefined grid points. For example, the probabilities of the
two most likely slot values can be formed into a tuple, e.g. (0.8, 0.1). Then the
closest grid point is identified from the following set {(1.0, 0.0), (0.8, 0.0), (0.8, 0.2),
(0.6, 0.0), (0.6, 0.2), (0.6, 0.4), (0.0, 0.0)} according to the L2 distance. Finally, the
index of the closest grid point is mapped into a 7-dimensional binary vector with
1 assigned to the corresponding position in the vector and 0 everywhere else. In
addition, there are also features for actions such as “inform about the matching
venue” or “inform about the requested slots”. For example, the features include
the number of accepted slots in the Bayesian Network and the number of matching
venues in the database given the accepted slots. From the point of view of the
dialogue manager, an accepted slot represents a piece of information which can
be trusted and used to query the database. In BUDS, a slot is regarded as being
accepted if its most likely value has a probability higher than some threshold, in
our case 0.8.
BUDS also supports hand-crafted policies which are designed by an expert. These

policies deterministically choose which action to take given the belief state and
they have the form of if/then statements written in the source code of the dialogue
manager. An example of a simple but reasonable hand-crafted policy is as follows:

(1) request values for slots in which the most likely value has probability lower
than 0.3,

(2) confirm the most likely values in slots where the most likely value has proba-
bility between 0.3 and 0.9,

(3) select between the two most likely values if the sum of the probabilities for
these values is more than 0.8,

(4) accept every slot which has a probability of the most likely value higher than
0.9,
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(5) inform about a venue if there is only one matching venue (matching is based
on the accepted slots),

(6) inform about slots requested by a user if the probability of the “user-requested”
value of the respective sub-history nodes is more than 0.5.

3. POLICY GRADIENTS

The objective of reinforcement learning is to find a policy π which maximises the
expected cumulative reward J(θ):

J(θ) = E

[
T−1∑

t=0

r(bt, at) | πθ

]
,

where r(bt, at) is the immediate reward when taking action at in belief state bt and
T is the number of turns in a dialogue3.
Learning the policy parameters θ can be achieved by a gradient ascent which

iteratively adds a multiple of the gradient to the parameters being estimated [Sutton
et al. 2000]. Using “the log likelihood-ratio trick” [Williams 1992] and Monte Carlo
sampling, the gradient can be estimated as follows:

∇J(θ) =
1

N

N∑

n=1

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)Q

π(bnt , a
n
t ) (3)

where the sampled dialogues are numbered n = 1 . . .N , the n-th dialogue has a
length of Tn turns, and Qπ(b, a) is the value of a belief-state/action pair given the

policy: Qπ(b, a) = E[
∑T−1

k=0 r(bt+k, at+k) | bt = b, at = a, πθ]. Note that Qπ(b, a)
can be approximated by a function compatible with the policy without affecting
the unbiasedness of the gradient [Sutton et al. 2000; Konda and Tsitsiklis 2000].
To obtain a closed form solution for (3), the policy π must be differentiable w.r.t.

θ. Conveniently, the softmax function (2) uses the policy parameters θ in a scalar
product with the feature vector Φa(b). Thus, it is easy to derive an analytic form
for the gradient ∇J . A detailed derivation of ∇θ log π(at|b(·|ht; τ); θ) is given in
Appendix A.
Although (3) can provide an estimate for the “plain” gradient, it has been shown

that the natural gradient ∇̃ J(θ) = F−1
θ ∇J(θ) is more effective for optimisation of

statistical models where Fθ is the Fisher Information Matrix [Amari 1998]. Based
on this idea, Peters et al. [2005] developed a family of Natural Actor Critic algo-
rithms which estimate the natural gradient of the expected cumulative reward. The
appealing part of these algorithms is that in practice the Fisher Information Ma-
trix does not need to be explicitly computed. In this work, the episodic version the
Natural Actor Critic algorithm is used to train the BUDS’s stochastic policy. To
obtain the natural gradient, w, of J(θ), the episodic Natural Actor Critic algorithm

3In the BUDS dialogue system, only episodic tasks with finite number of turns are consid-
ered. In the case of non-episodic tasks, one can use an expected discounted reward J(θ) =
E[

∑
∞

t=0 γ
tr(bt, at) | πθ] where γ is a discounting factor between 0 and 1.
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(eNAC) uses a least square method to solve the following set of equations:

rn =

[
Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]
· w + C ∀n ∈ {1, . . . , N}, (4)

where rn is the reward observed at the end of a dialogue n. As the episodic Natural
Actor Critic algorithm assumes that there is a single initial state of the system,
the constant C from (4) can be interpreted as the expected cumulative reward of
the initial state. Once w has been found, the policy parameters can be iteratively
improved by θ′ ← θ + βw, where β is a step size.
When the eNAC algorithm is compared to the gradient approach outlined in

[Sutton et al. 2000], the eNAC algorithm is significantly more efficient suggesting
that the use of the natural gradient is critical [Konda and Tsitsiklis 2000]. The
question therefore arises whether this type of policy gradient method can be gen-
eralised to optimise not just the policy but the parameters of the dialogue model
as well.

4. LEARNING THE DIALOGUE MODEL PARAMETERS

4.1 Natural Actor and Belief Critic algorithm

The difficulty with using policy gradient methods for learning the parameters of the
dialogue model is that since the function Φ, which extracts features from the belief
state, is usually a hand-crafted function of non-continuous features, the policy is
not usually differentiable w.r.t. τ . However, this problem can be alleviated by
assuming that the model parameters τ come from a prior distribution p(τ ;α) that
is differentiable w.r.t. the parameters α. This leads to a generalisation of the eNAC
algorithm called the Natural Actor and Belief Critic (NABC) algorithm.
The goal of NABC is to learn the parameters α of the prior distribution for

the model parameters together with the policy parameters θ while maximising the
expected cumulative reward. To derive the algorithm, a similar approach to that
taken for policy gradients will be used [Wierstra et al. 2007; Peters and Schaal
2008a]. Let the model parameters τ be sampled at the beginning of each dialogue,
then τ becomes part of the observed history: ht = {τ, a0, o1, . . . , at−1, ot}. Let Ht

be the trajectory4 of the system which consists of the observed history together
with the unobserved states: Ht = {τ, s0, a0, o1, s1, . . . , at−1, ot, st}. Let R(H) be
an expected reward accumulated along the trajectory H and p(H ;α, θ) be the
probability of the trajectory H given the policy and model parameters. Then, the
objective function can be expressed as the expected reward over all trajectories

J(α, θ) =

∫
p(H ;α, θ)R(H)dH.

The gradient of J(α, θ) can be derived using the “log likelihood-ratio trick” [Williams
1992] as:

∇J(α, θ) =

∫
p(H ;α, θ)∇ log p(H ;α, θ)R(H)dH. (5)

4Note that the trajectory is sometimes called the path or the complete history.
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Generally, the gradient in (5) does not have an analytical solution. Hence, the gra-
dient ascent algorithm must estimate the gradient using a Monte Carlo technique.
Assuming that the dialogues are numbered n = 1, . . . , N , the equivalent sampled
equation is:

∇J(α, θ) =
1

N

N∑

n=1

∇ log p(Hn;α, θ)R(Hn). (6)

By observing that the probability p(H ;α, θ) is a product of probabilities of the
model parameters and all actions, observations, and state transitions, the proba-
bility of the trajectory H can be defined as:

p(H ;α, θ) = p(s0)p(τ ;α)
T∏

t=1

p(ot|st, at−1)p(st|at−1, st−1)π(at−1|b(·|ht−1; τ); θ)

where p(s0) is the initial state distribution. Since the true state, observation and
transition probabilities do not depend on α and θ, it can be shown that the log-
gradient has the following form:

∇ log p(H ;α, θ) =

[
∇α log p(τ ;α)T ,

T−1∑

t=0

∇θ log π(at|b(·|ht; τ); θ)
T

]T
.

Then, after substitution of the computed gradient into (6) the resulting gradient
has the following form:

∇J(α, θ) =
1

N

N∑

n=1

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]T
R(Hn).

To improve the estimation of the gradient, a constant baseline, B, can be in-
troduced into the equation above. Williams [1992] showed that the baseline does
not introduce any bias into the gradient as

∫
∇p(H ;α, θ)dH = 0. Nevertheless, if

it is chosen appropriately it lowers the variance of the gradient. As a result, the
gradient is defined as:

∇J(α, θ) =
1

N

N∑

n=1

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]T
(R(Hn)−B).

(7)
The gradient defined in (7) still cannot be used directly since it includes the

expected reward R(Hn) which is not usually available. One could approximate the
expected reward with a reward observed at the end of each dialogue [Williams 1992].
However, it can be shown that this leads to a biased gradient [Peters et al. 2003].
Another approach is to approximate R(Hn) by a function which is compatible with
the policy without biassing the gradient estimate [Sutton et al. 2000; Konda and
Tsitsiklis 2000]. A compatible function approximation of R(Hn) parameterised by
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a vector [wT
α , w

T
θ ]

T is as follows:

R(Hn) ≈ R(Hn;wα, wθ)

≈

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]
· [wT

α , w
T
θ ]

T + C (8)

To compute the parameters wα and wθ, a least squares method can be used. In
this case, the expected reward R(Hn) is replaced by the reward rn observed at the
end of each dialogue and the following set of equations is solved whilst minimizing
the sum of the squares of the errors:

rn =

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]
· [wT

α , w
T
θ ]

T + C (9)

∀n ∈ {1, . . . , N}

Similar to the Natural Actor Critic algorithm, the solution [wT
α , w

T
θ ]

T is the
natural gradient which can be used to iteratively improve the policy parameters
and the prior of the dialogue model parameters: θ′ ← θ + βθwθ, α

′ ← α + βαwα.
This follows since after applying the approximation of the expected reward (8) to
the “plain” gradient (7):

∇J(α, θ) ≈

(
1

N

N∑

n=1

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

]T
·

·

[
∇α log p(τn;α)

T ,

Tn−1∑

t=0

∇θ log π(a
n
t |b(·|h

n
t ; τ); θ)

T

])
·

·[wT
α , w

T
θ ]

T (10)

where the expression in parenthesis is in fact an estimate of the Fisher Information
matrix.5 Thus, equation (10) can be written as ∇J(α, θ) ≈ Fα,θ[w

T
α , w

T
θ ]

T . As a
result, the natural gradient of the expected reward is:

∇̃ J(α, θ) = F−1
α,θ∇ J(α, θ) ≈ F−1

α,θFα,θ[w
T
α , w

T
θ ]

T = [wT
α , w

T
θ ]

T

To sum up, NABC solves the least square problem given in (9) to obtain the
natural gradient, [wα, wθ]

T , of the expected reward J(α, θ). Then the natural
gradient is used to iteratively improve the policy and the prior of the dialogue
model parameters: θ′ ← θ + βθwθ, α

′ ← α+ βαwα.
Finally when the estimate of the parameters converges, the algorithm has to

compute the model parameters given the prior. There are two possible ways: the
first option is to compute the expected values for the model parameters τ given
the distribution p(τ ;α) to provide the new estimates for τ , the second option is to

5Note that in the equation (10), the baseline B was cancelled by the constant C. As it can
be shown that C is an optimal constant baseline which minimize the variance of the gradient
[Williams 1992].
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sample the model parameters from the prior6. Since informal experiments suggest
that both strategies are comparable, only the variant of the algorithm using the
expected model parameters is used and evaluated in Section 5. The complete NABC
algorithm is described in Algorithm 1.
The NABC algorithm is centred around least square regression. In Section 5.4,

the NABC algorithm is used to estimate 1356 policy parameters and 577 model
parameters. However, ordinary least square regression becomes unstable when an
approximation with hundreds of parameters has to be estimated. For that reason,
some form of regularization is needed. In practice, a simple ridge regression with
the ridge parameter λ = 0.02 seems to be sufficient [Hoerl and Kennard 1970].

4.2 Natural Belief Critic

The NABC algorithm described in the previous section assumes that the dialogue
system uses a trainable stochastic policy and both the dialogue model and policy
parameters are trained jointly. However, it is also useful to be able to train the
model parameters separately from the policy parameters. For example, such an
algorithm could be used to train the model parameters of a dialogue system using
a hand-crafted policy such as the one described in Section 2.3. The Natural Belief
Critic (NBC) algorithm is a variant of NABC, which assumes that the policy is
fixed. The main benefit of NBC is that it can be used to optimise the model
parameters of a dialogue system using an arbitrary policy [Jurč́ıček et al. 2010].
Since the policy is fixed during training and only the prior of the model param-

eters needs to be optimised, only the natural gradient of J(α, θ) w.r.t α needs to
be estimated. Given the fact that ∇α log p(H ; ·, α) = ∇ log p(τ ;α), NBC solves the
following set of equations:

rn = ∇α log p(τn;α)
T · w + C ∀n ∈ {1, . . . , N} (11)

to obtain the natural gradient w of the expected reward J(·, α). The complete NBC
algorithm is described in Algorithm 2.
The NBC algorithm can also be understood as a random search algorithm. A

typical random search algorithm maximizing a function F is an iterative algorithm
with two steps in each iteration. First, it draws a set of samples, x1, . . . , xN , from
some probability distribution centred around the current point estimate of the
maximizer of the function F . Second, it uses some update rule to compute a new
estimate of the maximizer from the evaluations of the function F at x1, . . . , xN .
Sometimes, a random search algorithm also performs adaptation of parameters of
the sampling distribution.
One can see that NBC fits the procedure described above. First, the NBC algo-

rithm samples from the prior for the model parameters. Second, NBC updates the
parameters of the prior by adding a multiple of the natural gradient computed from
the evaluations of the sampled dialogue model parameters. Note that by updating
the prior parameters, the NBC algorithm also updates the point estimate of the
maximizer. In the case of NBC, the point estimate of the model parameters is the

6In practice, it is better to sample the model parameters continuously when running the dialogue
manager to avoid the risk of sampling unlikely model parameters and never using likely model
parameters.
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Algorithm 1 Natural Actor and Belief Critic

1: Let τ be the parameters of the dialogue model
2: Let p(τ ;α) be a prior for τ parameterised by α

3: Let π(at|bt; θ) be a policy parameterised by θ

4: Let I be number of executed iterations
5: Let N be a number of episodes sampled in each iteration
6: Let T be number of turns in a dialogue
7: Let βα and βθ be step sizes
8: Input: α1 - initial parameters of the prior for τ
9: Input: θ1 - initial parameters of the policy π

10: Output: θ - the policy parameters
11: Output: τ - the dialogue model parameters

12: for i = 1 to I do

Collecting statistics:

13: for n = 1 to N do

14: Draw parameters τn ∼ p(·;αi)
Execute the episode:

15: for t = 0 to Tn − 1 do

16: Draw action ant ∼ π(·|b(·|hn
t ); θi)

17: Observe the reward rnt
18: Observe ont+1

19: ht+1 ← ht ∪ {a
n
t , o

n
t+1}

20: end for

21: Record rn =
∑Tn−1

t=0 rnt
22: end for

Critic evaluation:

23: Choose [wα,i, wθ,i]
T to minimize the sum of the squares of the errors of

rn =

[
∇α log p(τn;αi)

T ,
∑Tn−1

t=0 ∇θ log π(a
n
t |b(·|h

n
t ; τ); θi)

T

]
· [wT

α,i, w
T
θ,i]

T + C

∀n ∈ {1, . . . , N}
Parameter update:

24: αi+1 ← αi+1 + βαwα,i

25: θi+1 ← θi+1 + βθwθ,i

26: end for

27: θ ← θI+1

28: τ ←
∫
p(τ ;αI+1)τdτ

expectation of the model parameters given the prior.

Thus, later in Section 5.5, the NBC algorithm is compared to other state-of-the-
art random search techniques such as SPSA [Spall 2003] and CMA-ES [Hansen
and Ostermeier 2001]. However, SPSA and similar techniques have strong require-
ments on the generation of the evaluated samples and they are affected by scaling
of the parameters [Peters and Schaal 2008b]. During informal experiments, it was
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Algorithm 2 Natural Belief Critic

1: Let τ be the parameters of the dialogue model
2: Let p(τ ;α) be a prior for τ parameterised by α

3: Let N be the number of dialogues sampled in each iteration
4: Let I be the number of training iterations
5: Let β be a step size
6: Input: α1 - initial parameters of the prior for τ
7: Input: π - a fixed policy
8: Output: τ - the dialogue model parameters

9: for i = 1 to I do

Collecting statistics:

10: for n = 1 to N do

11: Draw parameters τn ∼ p(·;αi)
12: Execute the dialogue according the policy π

13: Observe the reward rn
14: end for

Critic evaluation:

15: Choose wi to minimize the sum of the squares of the errors of
rn = ∇α log p(τn;αi)

T · wi + C

Parameter update:

16: αi+1 ← αi + βwi

17: end for

18: τ =
∫
p(τ ;αI+1)τdτ

observed that SPSA and CMA-ES were not able directly optimize the prior param-
eters α. However, it was noticed that they can be used in a transformed parameter
space. One viable transformation is, for example, t(α) : α→ logα.

4.3 The dialogue model parameters prior

In order to use NABC or NBC in practice, a prior for the model parameters τ is
needed. Since the parameters of the BN described in Section 2.2 are parameters of
multiple multinomial distributions, a product of Dirichlet distributions provides a
convenient prior.

Formally, for every node j ∈ {1, . . . , J} in the BN, there are parameters τj de-
scribing a probability p(j|par(j); τj) where the function par(j) defines the parents
of the node j. Let |par(j)| be the number of distinct combinations of values of
the parents of j. Then, τj is composed of the parameters of |par(j)| multinomial
distributions and it is structured as follows: τj =

[
τj,1, . . . , τj,|par(j)|

]
. Conse-

quently, a prior for τj can be formed from a product of Dirichlet distributions:∏|par(j)|
k=1 Dir(τj,k;αj,k), parameterised by αj,k. Let the vector τ = [τ1, . . . , τJ ] be a

vector of all parameters in the BN. Then, the probability p(τ ;α) from (11) can be
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defined as:

p(τ ;α) =
J∏

j=1

|par(j)|∏

k=1

Dir(τj,k;αj,k). (12)

After taking the log-derivative of (12) w.r.t. α, the following gradient is obtained:

∇α log p(τ ;α) =
J∑

j=1

|par(j)|∑

k=1

∇α logDir(τj,k;αj,k)

which has a closed form solution and can be used in (9) or (11) to compute the
natural gradient.

4.4 Plain gradient algorithms

To establish the importance of using the natural gradient (see Section 5), the previ-
ously proposed algorithms will be compared to methods using the “plain” gradient.
This section describes these algorithms for the two previously described tasks:

(1) joint estimation of the model and the policy parameters,

(2) estimation of the model parameters only.

In the first case, one can directly use the gradient defined by (10). This follows
since after the estimation of the parameters of the approximation of the expected
cumulative reward (8), the “plain” gradient (7) can be computed. The algorithm
has a very similar structure to the NABC algorithm. The only difference is that after
estimation of the parameters of the expected cumulative reward (8), the “plain”
gradient (10) has to be computed. Note, that the “plain” gradient has to be used to
update the policy and the prior of the dialogue model parameters. This algorithm
will be denoted as PGTAB.
In the second case, the “plain” gradient can be simply derived from (10) by

neglecting the part related to the policy parameters. As a result the “plain” gradient
of the expected cumulative reward w.r.t. the parameters of the prior is as follows:

∇αJ(α; ·) ≈

(
1

N

N∑

n=1

∇α log p(τn;α)∇α log p(τn;α)
T

)
wα. (13)

Again, the algorithm has a similar structure to its counterpart - the NBC algo-
rithm. There is only one extra step: after the estimation of the parameters of the
expected cumulative reward (11), the “plain” gradient is computed using (13). This
algorithm will be denoted as PGTB.
Note that the two algorithms described above are based on the policy gradient

theorem (PGT) [Sutton et al. 2000].

5. EVALUATION

An experimental evaluation of the NABC and NBC algorithms was conducted using
the BUDS dialogue system described in Section 2. The goal of the evaluation was
to test whether NABC and NBC could estimate a set of dialogue model parame-
ters which yielded better performance than a set of carefully hand-crafted model
parameters and parameters obtained by several baseline algorithms.
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The evaluation was in two parts:

(1) A set of model and policy parameters were estimated jointly by the NABC
algorithm and compared to the performance obtained using:
(a) the hand-crafted model parameters and a stochastic policy trained by the

eNAC algorithm,
(b) jointly estimated policy and model parameters trained by the PGTAB al-

gorithm using the “plain” gradient.

(2) A set of model parameters were estimated by the NBC algorithm using a finely
tuned hand-crafted policy. The result was compared to the performance of:
(a) the hand-crafted model parameters and the hand-crafted policy referred as

to HDC,
(b) the model parameters trained by the PGTB algorithm using the “plain”

gradient,
(c) the model parameters estimated by the SPSA and CMA-ES random search

algorithms.

The systems were trained and tested using an agenda-based user simulator [Schatz-
mann et al. 2005], for the Town-Info domain, which provides tourist information for
an imaginary town [Thomson and Young 2010; Young et al. 2010]. The user simu-
lator incorporates a semantic concept confusion model, which enables the systems
to be trained and tested across a range of semantic error rates.
The basic idea of the confusion model is that the correct dialogue act is randomly

placed in the N-best list given the error rate used for evaluation. First, an N-
best list of confidence scores is sampled from a Dirichlet distribution. Then, the
position of the correct dialogue act is determined by sampling from the multinomial
distribution corresponding to the sampled confidence scores. Finally, the rest of
the N-best list is filled with automatically generated incorrect hypotheses. The
parameters of the Dirichlet distribution are set to place a correct dialogue act on the
top of the N-best list with probability 1−e and to omit the correct dialogue act from
the N-best list with probability 1−e2, where e is the error rate. Although the NABC
and NBC algorithms are evaluated on error rates between 0% to 50%, comparison
of the performance between different parameter settings should be mainly done on
error rates between 30% to 40% since the average top semantic error rate obtained
in previous real user trials was about 34% [Thomson and Young 2010; Young et al.
2010].

5.1 Reward function

The reward function used in the evaluation experiments awards -1 in each dialogue
turn and at the end of a dialogue it awards 20 for a successful dialogue and 0 for an
unsuccessful one. A dialogue is considered successful if a suitable venue is offered
and all further pieces of information are given. In the case where no venue matches
the constraints, the dialogue is deemed successful if the system tells the user that
no venue matches and a suitable alternative is offered. Since a typical dialogue will
require around five or six turns to complete, this implies that around 15 represents
an upper bound on the achievable mean reward.
For training, the above reward function is not appropriate since in the first it-

eration, the policy is sampling its actions from a uniform distribution. Hence, the
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chance of a successful dialogue is very low, causing the eNAC algorithm to opti-
mise only the length of each dialogue instead of optimising both the length and the
success rate. This arises because it is locally more efficient to say “goodbye” in the
first turn than to try to succeed with a longer dialogue. As a result, the policy
converges to a local optimum corresponding to very short dialogues which are all
unsuccessful.
To alleviate this problem, it is better to optimise only the success rate at the

beginning of the training and later, as the success rate of the policy increases, also
optimise the length of dialogues. Thus, the eNAC algorithm uses a reward function
which still awards 20 for a successful dialogue and 0 for unsuccessful ones. However,
it assigns 0 for each turn when the policy success rate is 0 and it linearly increases
the per turn penalty to -1 as the success rate tends towards 100%.

5.2 Dialogue model for the Town-Info domain

The Bayesian Network for the Town-Info domain contains nine sub-goals: name
of the venue, type of venue, area, price range, nearness to a particular location,
type of drinks, food type, number of stars and type of music. Every sub-goal has a
corresponding sub-history node. The network also has nodes to represent address,
telephone number, a comment on the venue and the price. However, for these only
their sub-history nodes are used since a user can only ask for values of these slots
and cannot specify them as query constraints. Finally, the network includes the
“method” and “discourse” nodes which were described in Section 2.2. Although
the dialogue manager does not ask about these nodes explicitly, their values are
inferred just like any other node.
The history, “method”, and “discourse” nodes use fully parameterised conditional

probabilities in order to capture the detailed characteristics of dialogue flow. All of
the other sub-goal nodes use parameter tying as described in Section 2.2. Overall
this results in a total of 577 parameters in the dialogue model.

5.3 The policy actions

The BUDS policy implements 24 slot-level summary actions: 3 actions (“request”,
“confirm”, “select”) for each sub-goal apart from the “name of the venue” sub-goal.
The system is not allowed to ask a user for the name of a venue as the goal of the
dialogue is to find a suitable venue and provide the name.
The policy implements 8 global summary actions: inform about a venue matching

the query constraints, inform about a venue specified by a name7, inform about
an alternative venue, provide more details about the last informed venue, inform
about requested slots, inform about slots being confirmed by a user, repeat the last
prompt, ask if a user wants anything more, end the dialogue.
The features for the slot-level and the global actions are described in Section 2.3.

Overall there are 1356 parameters in the stochastic policy for the slot-level and the
global summary actions.

7This is a response in a scenario when a user is looking for information about a venue with a specific
name, e.g. “Do you have the phone number for Charlie Chan?” instead of a venue matching some
constraints, e.g. “Can you give me the phone number of any cheap Chinese restaurant?”

ACM Transactions on Speech and Language Processing, Vol. 0, No. 0, 0 2010.



Natural Actor and Belief Critic: Algorithm for learning parameters of dialogue systems · 19

5.4 NABC experiments

In the first experiment, the NABC algorithm was used to jointly estimate a set
of dialogue model and policy parameters by running the algorithm for 120 itera-
tions. The user simulator was set to produce dialogues on randomly selected error
rates. The error rate for each simulated dialogue was sampled from the uniform
distribution at the interval [0%, 50%]. The total number of sampled dialogues per
iteration was 32k. Both the policy parameters and the parameters of the prior
of the dialogue model were initialised by uninformative (uniform) parameters. In
total, there were 1933 parameters to be estimated. The baseline system was com-
posed of a stochastic policy trained by the eNAC algorithm. In this case, only the
policy was initialised by uninformative parameters as the dialogue model used the
hand-crafted parameters. Both the baseline system and the system with the learnt
BN and policy parameters were evaluated over error rates ranging from 0% to 50%.
At each error rate, 5000 dialogues were simulated and to reduce the variance of
results, this training and evaluation procedure was executed 5 times. The averaged
results along with 95% confidence intervals are depicted in Figure 3. The results
show that the system with the model and policy parameters trained using NABC
significantly outperforms the baseline system with hand-crafted model parameters
and the policy parameters trained using the eNAC algorithm at error rates above
15% (p < 0.05). For example, at 35% error rate, the mean reward was increased
by 0.96 absolutely from 7.07 to 8.03.

Figure 4 compares the learning curves of the baseline system with hand-crafted
model parameters and a policy trained using the standard eNAC algorithm, and
a system for which both the model and the policy parameters have been jointly
trained using the NABC algorithm. At the beginning the eNAC algorithm learns
faster as it does not have to learn the model parameters; however, as more it-
erations of training are completed, the performance of the fully trainable system
outperforms the baseline. Figure 4 also compares the learning curves of the NABC
algorithm and the PGTAB algorithm which uses the “plain” gradient. The NABC
algorithm converges significantly faster than the PGTAB algorithm. The results
also suggests that the use of the natural gradient is necessary as the performance
of the system with parameters estimated by the PGTAB algorithm does not reach
the performance of the system with hand-crafted model parameters and a policy
trained by the eNAC algorithm. The plotted mean reward is the average mean
reward over the error rates 0% to 50% used during training. Informal experiments
suggest that the NABC and eNAC systems are fully trained since further increasing
the number of dialogues used per iteration does not improve the performance. Af-
ter 120 iterations amounting to 3,840,000 dialogues, both the model and the policy
parameters converge.

Although the natural gradient should be invariant to linear parameter transfor-
mation, the experiments suggests that the step size for the parameters of the prior
of the model parameters, βα, must be significantly higher than the step size for the
policy parameters, βθ. It was observed that the policy reduces its variance much
faster than the prior of the model parameters when the step size is the same for both
parts of the gradient. Presumably the parameterisation of the prior of the model
parameters modelled as a product of Dirichlet distributions is non-linearly different
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Fig. 3. Results for the NABC and NBC algorithms. First, it compares the mean rewards of the
hand-crafted BN model parameters and the model parameters learnt by the NABC algorithm
when using the trained policy. Second, it compares the mean rewards of the hand-crafted BN

model parameters and the model parameters learnt by the NBC algorithm when using the fixed
hand-crafted policy.

to the parameterisation of the policy modelled as a softmax function. Setting a
much lower step size for the policy parameters in the NABC algorithm prevents
the policy from lowering its variance too quickly and enables it to adapt to the
changed model parameters. Based on some initial experiments, the step size for
the model parameters was set to be fifty times higher than the step size for the
policy parameters. The actual values used for the step sizes are dependent on the
definition of the reward function. For example, if the reward function awarded 200
for a successful dialogue then the gradient would be 10 times larger than the gra-
dient computed using the original reward function defined in Section 5.1. For that
reason, the optimal step sizes have to be tuned and tested on a particular reward
function. It is therefore important to keep in mind that the two step sizes βα and
βθ can differ significantly.

5.5 NBC experiment

In the second experiment, the dialogue model parameters were estimated by the
NBC algorithm using the hand-crafted policy. The setup of the experiment was

ACM Transactions on Speech and Language Processing, Vol. 0, No. 0, 0 2010.



Natural Actor and Belief Critic: Algorithm for learning parameters of dialogue systems · 21

Fig. 4. Comparison of average reward across all error rates during training of the baseline system
using the eNAC algorithm to train the policy and the hand-crafted model parameters, the system
using the NABC algorithm to train both the model and the policy, and the system using the
PGTAB algorithm to train both the model and the policy.

very similar to the previous experiment in Section 5.4. The NBC algorithm was
executed for 120 iterations with the simulator set to produce dialogues with error
rates between 0% and 50%. The error rates were again uniformly distributed among
the dialogues. In each iteration, 16k dialogues were sampled. The prior of the dia-
logue model was initialised by uninformative parameters. There were 577 dialogue
model parameters to be estimated. For the baseline system, no parameter train-
ing was necessary as both the model parameters and the policy were hand-crafted.
Both the baseline system and the system with the learnt BN parameters were eval-
uated over error rates ranging from 0% to 50%. At each error rate, 5000 dialogues
were simulated and to reduce the variance of results, this training and evaluation
procedure was executed 5 times. The averaged results along with 95% confidence
intervals are depicted in Figure 3. The results show that the system with trained
BN parameters significantly outperforms the system with hand-crafted parameters
especially at high error rates. For example, at 35% error rate, the mean reward
was increased by 6.36 absolutely from -7.04 to -0.68. Inspection of the results sug-
gests that this improvement can be mostly attributed to the sub-optimality of the
hand-crafted policy and the ability of the learnt BN parameters to compensate for
this.
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Fig. 5. Comparison of average reward across all error rates during training of the model parameters
using the NBC, PGTB, SPSA, and CMA-ES algorithms.

In Section 4.2, it was suggested that the NBC algorithm can be seen as a random
search algorithm. For that reason, the algorithm was compared to two state-of-
the-art random search algorithms: SPSA [Spall 2003] and CMA-ES [Hansen and
Ostermeier 2001]. To assess the importance of the natural gradient, the NBC algo-
rithm was also compared to the PGTB algorithm. Note that the PGTB algorithm
is using the “plain” gradient when updating the prior parameters. The results,
plotted in Figure 5, show that the NBC algorithm converges significantly faster
then any of the compared algorithms. The lower performance of PGTB can be
attributed to the use of the “plain” gradient.
CMA-ES is the best of the alternative algorithms; however, it appears that

the performance of the parameters estimated by this algorithm levels off before
it reaches the performance of the handcrafted parameters (referred to as HDC).
The lowest learning rate was achieved by the SPSA algorithm. SPSA is popular

for its simplicity; however, the performance of the algorithm is highly impacted by
sampling process of perturbations in the parameters. When it is used to optimise
problems where the impact of changes in the parameters is large, the algorithm
is not very efficient and the learning process can even diverge [Peters and Schaal
2008b]. Also, the algorithm does not take advantage of the knowledge of the gra-
dient of the prior when compared to PGTB. Consequently, the estimates of the
gradient have much higher variance and therefore a smaller step size must be used
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to prevent divergence of the algorithm.

5.6 Efficiency analysis

To formally analyse the computational complexity of the NABC algorithm, consider
that the algorithm is running for I iterations and N dialogues are sampled per
iteration. Further, suppose that the complexity of simulating one dialogue is T .
Consequently, this results in complexity O(NT ) for sampling N dialogues in one
iteration. In each iteration, the NABC algorithm involves solving a least square
problem which has complexity O(NP 2 + P 3) were P is the number of parameters
being estimated. So, the over all complexity of the NABC algorithm is O(I(NT +
NP 2 + P 3)). Similar results can be obtained for the NBC algorithm and also for
the versions of the algorithms using the “plain” gradient.
Although the complexity of the algorithm is cubic in the number of parameters

being estimated, P , in practice this is not the main contributor to the total running
time. The experiments described in the previous sections were performed on a grid
of computers with 16 machines each having two Intel Xeon 2.8GHz processors with
4 cores and 24GB of RAM each. In total, there were 128 cores used during training.
In each iteration, all 128 cores were used to simulate dialogues and the simulations
finished in about 15 minutes on average. Once the simulations were done, the
least squares problem was solved in less than 10 seconds on one core. The total
computation time for the NABC algorithm for the experiment in Section 5.4, was
about 30 hours - 120 iterations multiplied by 15 minutes.
When taking into account the number of cores, the simulations took 128 · 15 =

1920 minutes of computer time for one iteration. If this time is compared to the
time needed for solving the regression problem, then the time consumed by the
regression problem appears to be negligible. Therefore, to evaluate the efficiency
of the NABC and NBC algorithms, one has to mainly pay attention to the number
of dialogues needing to be sampled to estimate an accurate gradient and the total
number of iterations to reach a local optimum.
Figure 4 compares the learning curves of the NABC algorithm and the “plain”

gradient PGTAB algorithm. The results suggest that NABC converges significantly
faster than the ABC algorithm. It has already been noted in the literature that
the use of the natural gradient can converge up to 3 orders of magnitude faster
than methods using “plain” gradients [Peters and Schaal 2008a]. Although the
methods using the “plain” gradient eventually reach a local optimum, it can just
take too long. To test whether the PGTAB algorithm does converge, the training
using the PGTAB algorithm continued for further 80 iterations. This gave an
improvement of about 2.1, still some way away from the optimum. No further
iterations were performed, since continuation to convergence would be prohibitively
time consuming.
The space complexity of the NABC and NBC algorithms is mainly defined by

the least square method. The least square method involves the construction of a
square matrix and an inversion of that matrix. In the experiments, square matrices
of order 1,933 or 577 had to be inverted and the inversion of the matrices took
less than 1 second. As the inversion has quadratic complexity in space and cubic
complexity in time, the largest square matrix which can be inverted on the used
grid computers using NumPy [Oliphant 2007] is of order 20,000 and takes about
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70 minutes. When the inversion is parallelised over 8 cores on one machine than
it takes about 10 minutes. Although some extra optimizations can be performed,
the NABC and NBC algorithms are clearly limited by the use of the least square
method. Nevertheless, the algorithms would enable scaling from the current task
with 9 slots to a task with up to 100 slots. However, note that at least 10 times
more dialogues would have to be sampled in each iteration to train such a system.

6. DISCUSSION

As noted in Section 1, the task of learning dialogue model parameters is not a new
problem and there have been several attempts in this direction. The most relevant
works are: Georgila et al. [2005], Kim et al. [2008], Williams [2008b], Doshi and
Roy [2007], Syed and Williams [2008] and Thomson [2010].
For example, Georgila et al. [2005] and Kim et al. [2008] used maximum likelihood

estimates from an automatically annotated corpus of real dialogues. This approach
is based on the assumption that the automatically annotated states are correct.
The method is problematic as the quality of the estimated model depends on the
quality of the automatic annotation which itself relies on having a good dialogue
model.
Williams [2008b] obtained maximum likelihood estimates from a corpus with

manually annotated dialogue states. Although this approach can provide good es-
timates of the dialogue model, it is very laborious and in practice only a small
number of dialogues can be obtained. Also, in many real dialogues, some compo-
nents of the dialogue state, especially the user’s goal, are hard to determine. Hence,
this approach is usually restricted to cases where the user’s goal remains constant
and the dialogue is simple to annotate.
Doshi and Roy [2007] presented a dialogue model which was trained by Viterbi

learning [Rabiner 1989] using a reinforcement signal based on the successful comple-
tion of each dialogue. The dialogue model had one slot with 7 values and accepted
19 different observations. Every time the dialogue system succeeded in a dialogue,
the most likely state sequence decoded by the Viterbi algorithm was used to update
the probabilities of the dialogue model. By conditioning on the successful comple-
tion of a dialogue, it was assumed that the decoded most likely sequence of states
was correct. In this method, the initial model parameters have to be handcrafted
with some reasonable quality to be able to improve the parameters. From the pre-
sented work, it is not clear whether it scales to dialogue models with multiple slots
with tens or hundreds of values.
Syed and Williams [2008] showed how to use Expectation-Maximization (EM) to

learn parameters of an observation model. A dialogue model can be factored into
a transition model between states, and an observations model, but in this work,
no attempts were made to learn the transition model. Instead, it was assumed the
goal remains constant and hence the complexity of the problem was significantly
reduced and a tractable method was achieved.
Thomson [2010] used Expectation-Propagation (EP) to infer hidden state in-

formation together with the model parameters. The algorithm treats the task of
learning the model parameters in an unsupervised manner. However, it is not clear
to what extent likelihood maximisation over a dialogue corpus correlates with the

ACM Transactions on Speech and Language Processing, Vol. 0, No. 0, 0 2010.



Natural Actor and Belief Critic: Algorithm for learning parameters of dialogue systems · 25

expected cumulative reward of the dialogue system.
One of the requirements of the methods based on maximizing likelihood of the

data, such as EM and EP, is that the model must be generative. In other words,
the observations must be conditioned on the dialogue state. The belief update (1)
was transformed into a generative model by using Bayes theorem, and although this
form is convenient for using with EM and EP, it is not necessary. Instead, b(st|ht; τ)
can be modelled directly by optimising a target evaluation metric and this is a
potentially interesting future direction. Even if the model is generative, it is still
useful to directly optimise the evaluation metrics. Already in the speech community,
discriminative training which optimises the parameters of a hidden Markov model
to maximise word accuracy has achieved significant results [Kapadia 1998]. One
of the reasons is that the structure of generative models is not perfect due to
many approximations. Consequently, additional optimisation of the parameters can
improve their performance. Nevertheless, the EM and EP techniques are important
as they enable the models to be trained in an unsupervised manner and utilise
corpora of real dialogues.
To avoid the problem of building an estimator of a belief state and eventually

learning the parameters of the estimator, the reinforcement community has de-
veloped several techniques for solving POMDPs based on policies with internal
memory8. These techniques learn to map observations directly to actions and they
use their internal memory to summarise important information from the past obser-
vations. For example Wierstra et al. [2010], used recurrent neural networks (RNN),
to approximate the policy. At each step the RNN updates its internal memory
and proposes a new system action based on the accumulated information in the
internal memory and the last observation. Conveniently, the RNN is designed in
such way that it is possible to compute the gradient w.r.t. all parameters of the
RNN. As result, the parameters of the RNN can be learnt by gradient descent. An-
other similar approach is the work of Aberdeen [2003]. In this work, the memory
is represented as a finite set of internal states and the policy maintains beliefs over
all of these states. Every time there is a new observation, the policy updates its
beliefs and proposes a new action. Again, the gradient w.r.t. all parameters can be
obtained and gradient descend can be used. Although such methods may seem to
be attractive, they are not suitable for spoken dialogue systems. In both examples,
there is no meaning associated with the values in the internal memory. The use of
internal memory is only optimised to maximise the expected cumulative reward of
the final policy. However, a dialogue system needs an explicit model of dialogue
state. For example, the estimate of the most likely dialogue state is used to query
a database and the obtained information is used in the system actions.
In Sections 5.4 and 5.5, the evaluation of two algorithms for estimation of pa-

rameters in spoken dialogue systems was described. The NABC algorithm jointly
estimates the dialogue model and the policy parameters whereas the NBC algo-
rithm estimates only the model parameters assuming that the policy is fixed. Both
these algorithms directly optimise the target evaluation metric - the expected cu-
mulative reward and they do so without any of the limitations of the alternatives
discussed above.

8The internal memory is sometimes called internal state.
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The system trained by the NABC algorithm significantly outperforms the hand-
crafted model parameters and the eNAC trained policy. Also, the NABC algorithm
outperforms the PGTAB algorithm. The results show that the use of the natural
gradient is critical as the learning rate of the PGTAB algorithm is too slow to
outperform the handcrafted model parameters in some reasonable time. The main
benefit of the NABC algorithm is that a developer of dialogue systems can avoid
the cost of hand-crafting the parameters while gaining increased performance.

For cases where there is an existing fixed policy, perhaps prescribed by other
design considerations, the NBC algorithm can significantly improve performance by
optimising the model parameters. It is presumed in this case that the sub-optimality
of the hand-crafted policy is compensated by the learnt BN parameters. Thus, if
the system designer is required to use a policy with a certain fixed behaviour then
optimising the model parameters with NBC can deliver a significant gain. Since
the NBC algorithm can be understood as a random search algorithm, it was also
compared to other state-of-the-art techniques such as SPSA and CMA-ES. The
results showed that the learning rate of the NBC algorithm is significantly faster.
Similarly to NABC, the NBC algorithm is also faster that the PGTB algorithm
which is using the “plain” gradient.

The model parameters estimated by NBC are significantly different to the model
parameters learnt by NABC. When the NBC algorithm estimates the natural gra-
dient, it does not take into account the actions taken by the policy and the effects
of the actions are simply averaged. On the other hand, the NABC algorithm uses
information about the actual actions taken. For example, if in NABC unlikely ac-
tions are sampled and the resulting dialogue obtains a low reward, the cause of the
low reward is attributed to those actions and not to the sampled model parameters.
Similarly, if NABC samples unlikely model parameters and the resulting dialogue
obtains a high reward, then the gain is attributed to the model parameters rather
than the sampled actions. Thus, the NABC algorithm actively uses the information
about sampled actions to lower the variance in the estimate of the gradient of the
parameters.

When training both the model and the policy parameters, joint optimisation
is necessary. One could think of a training scheme in which the NBC and eNAC
algorithms alternate. The NBC algorithm would be used first to improve the model
parameters, and the eNAC algorithm would be used second to improve the policy
parameters. This two step training would then continue until convergence. Such
a training scheme was used in [Jurč́ıček et al. 2010]. However, in that case it was
assumed that there was a reasonable set of handcrafted model parameters which
can be used to initialise the training process.

The difficulty with this alternating approach is that neither the policy or the
model parameters can be improved when both initialised by uninformative param-
eters. In the first stage, for example, the policy cannot be improved since the
estimate of the belief state is based on uninformative parameters. In other words,
the dialogue model does not have any preference for particular states given the last
observation and the last actions. The problem is that all dialogue states are equally
likely given the last observation and the last action. Consequently, only one belief
state is presented to the policy learning algorithm. Similarly, the model parameters
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cannot be improved because the actions sampled from the stochastic policy using
uninformative parameters are all equally likely. In other words, the policy does
not have any preference for particular actions given the belief state when using
uninformative parameters.
The methods presented in this paper can be extended in principle to optimise

any parameter in the entire dialogue system. The trick is that the learning of
non-differentiable parameters of the cumulative reward9 is replaced by learning
differentiable parameters of their prior.
The design of the prior is entirely a matter for the system developer. The main

goal should be to capture important correlations between different parameters.
In Section 4.3, the prior for the model parameters was designed as a product of
Dirichlet distributions. Although such a prior is differentiable and it is easy to
sample from such a distribution, it is not necessarily the most efficient prior since
it assumes that parameters of a particular BN node are independent of parameters
of other BN nodes. For example, information about the likelihood of changing the
value of the “food” node could be used to learn about the probability of change in
the “drink” node since it would be reasonable to expect that these probabilities are
not very different. So, one way to improve the learning rate and reduce the number
of sampled dialogues would be to use domain specific priors, which could be done
automatically based on some form of ontology [Young et al. 2010].

7. CONCLUSION

This paper has proposed a novel reinforcement learning method for estimating
parameters of statistical spoken dialogue systems. The Natural Actor and Belief
Critic (NABC) algorithm jointly optimises the model and the policy parameters of
a POMDP-based dialogue system. Based on observed rewards obtained in a set
of training dialogues, the algorithm estimates the natural gradient of the expected
cumulative reward of a dialogue system and then adapts jointly the Dirichlet prior
distributions of the model parameters and the stochastic policy so as to maximise
the expected cumulative reward. Simulations showed that the performance of the
jointly learnt model and the policy parameters significantly outperforms the base-
line system. In addition, this paper has presented a variant of the NABC algorithm
aimed at training only the model parameters while the policy is fixed. This algo-
rithm, called Natural Belief Critic (NBC), is useful for optimising the performance
of a dialogue system which has a hand-crafted policy exhibiting certain required
characteristics. Simulations showed that the NBC algorithm learns a significantly
better set of model parameters when compared with an initial set of hand-crafted
model parameters.
Overall we believe that this class of natural gradient based optimisation algo-

rithms offer considerable potential for improving the performance of statistically
based spoken dialogue systems. Furthermore, the algorithms are not limited to
the dialogue management component but could in future be extended to optimise
parameters in both the speech understanding and speech generation components

9Note that the model parameters are differentiable parameters of the likelihood function over
a corpus of dialogues; however, the model parameters are non-differentiable parameters of the
cumulative reward.
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with respect to the required reward function.

APPENDIX

A. THE GRADIENT OF THE LOGARITHM OF THE SOFTMAX POLICY

To derive the gradient of the logarithm of the softmax policy,∇θ log π(at|b(·|ht; τ); θ),
first recall that the softmax policy (2) is:

π(at|b(·|ht; τ); θ) ≈
eθ

T ·Φat
(b(·|ht;τ))

∑
ã e

θT ·Φã(b(·|ht;τ))
.

Note that θ are the policy parameters and Φa(b) maps the belief state, b, into a
vector of features. For the sake of simplicity, denote b(·|ht; τ) as b and at as a.
Then the gradient ∇θ log π(a|b; θ) can be derived as follows:

∇θ log π(a|b; θ) = ∇θ log

(
eθ

T ·Φa(b)

∑
ã e

θT ·Φã(b)

)

= ∇θ log

(
eθ

T ·Φa(b)

)
−∇θ log

(
∑

ã

eθ
T ·Φã(b)

)

= Φa(b)−
1∑

ã e
θT ·Φã(b)

∇θ

(∑

ã

eθ
T ·Φã(b)

)

= Φa(b)−
1∑

ã e
θT ·Φã(b)

(∑

ã

eθ
T ·Φã(b)Φã(b)

)

= Φa(b)−
∑

â

eθ
T ·Φâ(b)

∑
ã e

θT ·Φã(b)
Φâ(b)
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